Electrochemical Impedance Analysis of a PEDOT:PSS-Based Textile Energy Storage Device

نویسندگان

  • Ida Nuramdhani
  • Argun Talat Gokceoren
  • Sheilla Atieno Odhiambo
  • Gilbert De Mey
  • Carla Hertleer
  • Lieva Van Langenhove
چکیده

A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study

BACKGROUND Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will...

متن کامل

Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, an...

متن کامل

Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer pat...

متن کامل

An Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors

In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets is investigated. The electrochemical properties of the produced electrode are studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques in 3M NaCl, NaOH, and KOH electrolytes. Scanning electron microscopy (SEM) is used to characterize the mi...

متن کامل

Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis

The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017